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Figure 1: Our proposed physically based video editing approach outputs an edited version of an input video where the physical properties
of an object have been manipulated, such as exaggerating the elastic behavior of a plush toy. A key aspect of our approach is that we append
an image-based visibility constraint to the physics-based simulation to ensure that the simulated object can be appropriately textured from
the input video.

Abstract

Convincing manipulation of objects in live action videos is a difficult and often tedious task. Skilled video editors achieve this
with the help of modern professional tools, but complex motions might still lack physical realism since existing tools do not
consider the laws of physics. On the other hand, physically based simulation promises a high degree of realism, but typically
creates a virtual 3D scene animation rather than returning an edited version of an input live action video. We propose a
framework that combines video editing and physics-based simulation. Our tool assists unskilled users in editing an input image
or video while respecting the laws of physics and also leveraging the image content. We first fit a physically based simulation
that approximates the object’s motion in the input video. We then allow the user to edit the physical parameters of the object,
generating a new physical behavior for it. The core of our work is the formulation of an image-aware constraint within physics
simulations. This constraint manifests as external control forces to guide the object in a way that encourages proper texturing at
every frame, yet producing physically plausible motions. We demonstrate the generality of our method on a variety of physical
interactions: rigid motion, multi-body collisions, clothes and elastic bodies.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Photograph and video manipulation is nearly as old as photographs
and videos themselves. Modern professional tools, such as Adobe
Photoshop or After Effects, allow highly skilled users to manipu-

late images and videos. For example, with rotoscoping, hole-filling
and keyframing, an animator could alter a foreground object’s mo-
tion to create a desired effect, such as following a certain trajectory.
However, these manipulations are based largely on low-level edits
without parameters that correspond to the physical world captured
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in the images [ZFL∗10]. On the other hand, physically based sim-
ulation has made leaping advances in recent years, diminishing the
visible difference between rendered animations and captured live
action videos. However, the typical input to and the output from
physically based simulation is a description of the virtual 3D scene
geometry and associated properties: that is, not directly inputting
and outputting live action videos.

We propose to combine video editing and physically based sim-
ulation to achieve physics-based video editing. By bootstrapping
physically based simulation with image-based constraints, we in-
herit a level of motion realism difficult to achieve without detailed
and tedious manual intervention. Given an input video of an object,
our approach permits to generate a new version of the video where
the physical properties of the object have been edited (Figure 1).

Problem statement and contributions. Our goal is to mod-
ify an input video such that the captured object appears with new
physical properties. We assume a geometric 3D model of the ob-
ject is available. This (untextured) model can be known a priori
(e.g., from measurements or 3D printing), automatically computed
from a video [PR12, SSS06, TKM∗13], obtained from a single im-
age [CZS∗13,HWK15] or available in online public repositories of
3D models (e.g., 3D Warehouse or Turbosquid). We represent the
object using its 3D model and apply a physics-based simulation.
The challenge that arises is the following: when the simulation is
applied to the model, object parts which were previously occluded
or facing away from the camera might become visible (see Fig-
ure 2(d)). The appearance of these areas is unknown. Therefore,
there is no texture information available to render the physically
modified object and insert it back into the video.

If the texture of the model was known entirely, then it could be
directly manipulated using any standard 3D animation tool. How-
ever, this is not the case when combining a 2D video with a 3D
physical simulation. The appearance, and thus the texture of the
model, is known only partially, depending on the camera viewpoint.

A straightforward approach to infer missing texture informa-
tion is inpainting. However, despite the large existing literature
in the field [GKT∗12, NAF∗13, KWB∗15], inpainting in a spatio-
temporally consistent way for moving objects in a video is still an
open challenge. Other naive solutions, such as creating a static tex-
ture and generating a rendering of the direct, unaltered simulation,
suffer from obvious pitfalls. Static textures cannot incorporate vi-
sual changes present in the input video, such as changing lighting
conditions. Another approach for inpainting the unknown texture
area is to rely on special properties of the object, such as symme-
try and then “mirror” the texture [KSES14]. However this does not
apply to general objects (see Figure 2(c)). Generally speaking, es-
timating the unobserved texture of an object is a research challenge
in itself [MNZ∗15].

Instead of attempting to fill in the missing texture areas, we in-
vestigate and propose an alternative approach which is orthogonal
to the inpainting paradigm. Our approach computes control forces
for the physical simulation, which encourage that objects parts for
which no texture information exists do not become visible. This
constitutes the main contribution of our work.

In this paper, we focus on the manipulation of videos of a rigid

object moving in front of a static background and acquired by a
fixed camera (Figure 1). Our method estimates the pose of selected
objects from an input image or video and represents them in 3D
space using a 3D model of the objects. The user then draws from
the rich set of physically based simulation algorithms to gener-
ate a physically edited version of the model, which is then trans-
ferred back into the input video (Figure 1). Our contribution is the
use of an image-based visibility constraint that we append to the
physics simulation to ensure that the simulated object can be ap-
propriately textured (see Figure 2(e) and Figure 2(f)). Our solu-
tion acknowledges that the output of the simulation will be another
video. Consequently, it gently guides the simulation in such a way
that the object can be textured convincingly. Our framework does
not depend on a particular type of simulation technique: we im-
plement it as a wrapper around the general-purpose physics engine
BULLET [Cou05]. We demonstrate the effectiveness of our method
for various typical physical models: rigid motion, multi-body col-
lisions, cloth and elastic bodies.

2. Related work

Our work is related to image/video editing, physics-based simu-
lation and physics behavior control. Given the vastness of these
fields, we focus only on work most relevant to ours.

Image and video editing. To manipulate the motion or pose of
an object in an image or a video, deformation techniques are gener-
ally applied. Image deformation is often expressed as mesh defor-
mation, such as [SMW06, ACOL00], among many others. Some
techniques are guided with the aid of the 3D model of the ob-
ject such as [KSES14, ZFL∗10]. For video editing, mesh defor-
mation techniques can be applied in the temporal domain such
as [KWSH∗13], video mesh [CPW∗11], and also with the aid of
the 3D model [JTST10]. Related to our texture visibility constraint,
[SKPSH13] deform a mesh while avoiding inverting elements such
as mesh triangles.

Appearance manipulation in images has also been investigated.
For example, [YJHS12, BLDA11] transfer edits between images,
or [GCZ∗12, HE07] in the context of image appearance manipula-
tion, such as scene completion, using photo collection. Image and
video manipulation was also studied in the context of blending and
composition [PGB03, CZSH13]. Some works manipulate objects
in videos by modifying the video timeline and the video frames
order [LZW∗13, SSSE00].

While visually attractive and entertaining results can be ob-
tained, these techniques are physics-blind in the sense that they edit
images and videos without considering the laws of physics. This
might result in manipulated objects whose motion lacks physical
realism. In contrast, our physics-aware video editing approach can
deal with this issue by building upon physics engines.

Simulation. Physics based simulation has continued to pro-
mote realism in the context of computer animation. It is an ac-
tive area of research both in academia and industry, and many dif-
ferent techniques have been proposed during the last few decades
(see [NMK∗06] for a survey). The output of physics-based simula-
tion is generally a virtual 3D scene or a rendered animation. A few
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Examples of video editing in combination with physics-
based simulation with and without our image-based visibility con-
straint, in the context of puppetry (see Figure 1). (a,b): image from
the input video and the aligned object mesh. Result of object sim-
ulation without (d) and with our image constraint (f), and their re-
spective textured version (c,e). The object mesh triangles with un-
known texture are displayed in green. In (c), these triangles are
textured by “mirroring”. Note how our approach (e,f) can recover
from an extreme pose with many invisible parts, while still return-
ing a physically plausible motion (see supplementary video).

systems accept a video as input, for example the methods incor-
porating physics simulation to guide the 3D reconstruction process
[SGdA∗10], however they still return a synthetic scene.

A key difference with the typical physics simulation methods is
that our approach returns a physically-edited version of the input
real footage, rather than creating a synthetic scene. Moreover we
incorporate an image-based constraint into the physics simulator.
Our image-aware physics simulation is guided and controlled such
that the image-based visibility constraint is encouraged. In the fol-
lowing we review methods which are related to this scenario.

At a high level, our constraint is similar in spirit to those arising
during contact and collision handling, see for example [HVS∗09].
Rather, than preventing interpenetrations of geometric models, we
prevent unseen parts of the model from turning toward the camera.

Physical behavior control. There exists a large body of work
on how to control motion and behavior of physics based ani-
mation. The framework of spacetime constraints introduced by
Witkin [WK88] is a powerful tool that allows a user to specify mo-
tion constraints, such as “jump from here to there” for character
animation. The result is a motion which best preserves the input
motion, i.e., it ensures interpolation of user edits without deviating
too severely from the original physics. The seminal spacetime con-
straints work of Witkin paved the way to several subsequent meth-
ods such as [Coh92, Gle97, BSG12, LHDJ13], among many oth-
ers. Similar to standard (uncontrolled) physics-based simulation,
spacetime constraints output a 3D synthetic animation rather than
an edited version of a live action video.

External control forces have been used to alter trajectories
[BP08], control fluids [MTPS04] and guide smoke animation
[TMPS03], among many others. Our approach follows the same
line, but we compute control forces to fulfill image-based con-
straints, rather than geometry constraints.

3. Proposed approach

The input to our method is a video of a moving rigid object captured
by a static standard color camera. Our method returns an edited ver-
sion of the input video in which the object follows a certain physical
behavior desired by the user. To achieve this, we append image-
aware external control forces in the physically based simulation to
encourage proper texturing of the object (see Figure 4). In the fol-
lowing, we review the equations of motion, define the setting, and
then introduce our energy formulation.

3.1. Equations of motion

The equations of motion of a given object with Rayleigh damping
are Mẍ+Cẋ− fint(x) = fext(x, ẋ) [Sha97]. The vector x represents
the positions of the object points, and ẋ and ẍ are the first and sec-
ond derivatives of x with respect to time. M is the physical mass
matrix, C is the Rayleigh damping matrix, fint is the vector of in-
ternal forces, and fext is the vector of external forces such as grav-
itational forces. The equations of motion can be used to simulate
rigid bodies, as well as soft bodies depending on fint .

The equations of motion may be numerically solved by discretiz-
ing them with respect to time using an integration scheme such as
implicit Euler [BW98]. Then position vector x can be integrated
over time starting from a given rest pose xrest . In this paper, we do
not assume any specific integration scheme or physics engine, and
consider the simulation procedure as a black box physics simulator.

3.2. Settings

The equations of motion are applied to the 3D points of the ob-
ject. The 3D model of this object is represented by a triangle mesh
consisting of N vertices x̂i with i = 1 . . .N, and M triangles with
corresponding centroids ĉ j and normals n̂ j with j = 1 . . .M. In a
preprocess stage, this 3D model is aligned with the object in each
frame of the input video [RRB12]. Let xt

i , ct
j and nt

j be the corre-
sponding entities x̂i, ĉ j and n̂ j expressed with respect to the cam-
era at frame t. All the mesh vertices at frame t are described in
xt = {xt

1, . . . ,x
t
N}.
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violating
trajectory

Camera

Figure 3: Illustration of the image-based visibility constraint. The
triangle (grey) of the input frame initially points away from the
camera (i.e., unobserved triangle), while its transformation (green)
now faces the camera (i.e., the triangle gets visible).

As motivated above, we influence the physical behavior with the
help of external control forces. These forces are added to the set
of external forces fext for the physics simulation. The simulation
starts with the rest pose xrest = x1, and in our experiments, we set
the simulation timestep size to the framerate of the input video. Af-
ter performing a time step at frame t, the physics simulator returns
the state xS = {xS1 , . . . ,xSN} of the object, where the superscript S
emphasizes the fact that the values are computed by the simula-
tor. From these vertex positions, triangle centroids cSi and triangle
normals nSi can be computed. Each xSi , cSi , and nSi has a corre-
sponding xt

i , ct
i , and nt

i in the aligned mesh, as described above. For
writing simplification, we omit the superscript t in the following.

3.3. Energy formulation

For each object vertex xi, we compute a control force fi such that
occluded parts in the input will not become visible in the output
video, while yet producing a physical behavior which appears phys-
ically plausible. We express this problem as an energy minimiza-
tion over the set of free parameters fi:

E = λCEC +λFEF +λT ET , (1)

where EC prevents violating trajectories, EF favors control forces
of small magnitude to deviate only slightly from the original sim-
ulation and ET encourages temporal continuity of the forces. The
weights λ balance the importance of these terms. In the following
paragraphs we discuss these energies in more detail.

The image-aware energy EC prevents violating trajectories and
is a key aspect of this paper. A trajectory is violated when a tri-
angle occluded in the current input frame becomes visible at the
corresponding time step of the simulation (because its texture is
unknown). We define the binary visibility variable v of a triangle as
1 when it is visible, and 0 otherwise. The visibility of the triangle j
in the input video and obtained by simulation are respectively writ-
ten v j and vSj . A triangle j is considered visible when 〈n j,c j〉< 0,
where 〈., .〉 is the inner product operator (see Figure 3). The con-
trol force f influences the vertices position xSj , and thus in turn
nSj , cSj and vSj , and therefore can be optimized to avoid violating
trajectories. In addition, an offending triangle should be penalized
by how “visible” it is, i.e., larger triangles in the image should be
penalized more than smaller triangles. The normalized area w′j is

computed by w′j = a j/A, where a j is the area of the triangle j ob-
tained by the simulator in the image, and A is the total surface area.
Over all triangles, the energy is expressed as

EC =
M

∑
j

δ(vSj ,1− v j)w
′
j, (2)

where δ(a,b) = 1 when a = b = 1 and returns 0 otherwise. It acti-
vates the constraint for each triangle j leading to a violating trajec-
tory, and non-offending triangles do not contribute to the cost.

To remain faithful to the physical motion, we would like our con-
trol forces to remain small. Thus, EF punishes large control force
magnitudes:

EF =
N

∑
i
‖ fi‖ (3)

where ‖.‖ represents the l2 norm. Finally, the energy ET encour-
ages temporal consistency:

ET =
N

∑
i
‖ fi− f̃i‖. (4)

where f̃i is the force corresponding to fi at the previous frame.

The total energy E is optimized at each frame. Because EC de-
pends on the black box physics engine, analytic gradients of the
energy E may not be easily computed. Instead, we compute gra-
dient by taking central differences. Then we compute f using an
off-the-shelf nonlinear optimization solver (KNITRO [BNW06],
see details in Section 4.1).

Rigid body. For deformable bodies, a control force is computed
for each vertex. In the special case of rigid body dynamics, only a
force acting on the center of mass and the torque acting on the ro-
tational degrees of freedom needs to be computed per rigid object.
This greatly reduces the amount of variables down to 6.

Constraints. In early experiments, we expressed the violating
triangles as hard constraints. However the optimization often took
too long to converge. A first reason is that a feasible solution is
not readily available as initial solution. In contrast, when using soft
constraints, there is no concept of “feasible” solution per se, and
since we search for the control force vectors with low magnitude
(Eq. 3), we can simply initialize them with zero. A second rea-
son is that hard constraints generally lead to a sudden discontinuity
when a constraint is activated/deactivated [SKPSH13]. Instead, we
combine the soft constraint of the triangle visibility (Eq. 2) with
barrier functions [SKPSH13]: the cost increases to infinity as the
point approaches the boundary of the feasible region. In rare cases,
it can still occur that a violating triangle becomes visible, but it is
generally small, and in that case, we simply linearly interpolate the
texture from the neighborhood triangles as a fail safe.

3.4. Fitting the input video

To initialize the simulation, we consider that objects start their mo-
tion from a state of rest, and thus the initial velocity of the first
frame xt is set to 0. In the case the object is moved by an external
force (e.g., by a hand moving an object through space), the input
sequence is tied to the physical simulator by specifying a subset
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of the object vertices as anchor vertices. The user can interactively
select them in our program by directly clicking on the object mesh
vertices, and this set of anchor vertices is used along the video. An-
chor vertices hold the object in place, i.e., given the example above,
they prevent the object to slip off the hand and just fall down. The
locations of these anchor vertices change from frame-to-frame ac-
cording to their locations specified in the position vector xt , and are
not modified by the simulator.

The non-anchor vertices of the object are the degrees of freedom
whose trajectories are governed by the equations of motion, and if
required, are influenced by our optimized control forces.

4. Results

As in any physics simulation, the user assigns the physical param-
eters of the object (e.g., deformation, stiffness, etc). The result ob-
tained by the physics engine is displayed, and the user can adjust
the physical parameters if wanted. Then our approach runs over
this engine. For casual users not familiar with simulation, we also
suggest some default parameters based on the intended general be-
havior that the user wants to create, e.g., elastic look.

We encapsulate our method over an existing physics engine. We
intentionally did not write a specific simulation method and we do
not assume any particular engines or simulation methods. There-
fore any simulation tool can be used as black box and our method
can be applied on top of these different engines. On the user side,
this physics engine bootstrapping also allows the user to continue
using her favorite physics engine.

In the following, we provide implementation details and then
show a variety of applications of our approach. They illustrate re-
sults with different kinds of input and target edits. All these re-
sults have been created by the same implementation code of the
approach described in Section 3.

4.1. Implementation details

To facilitate follow-up work, we provide on our project website all
the input data such as the videos, object 3D models, physics pa-
rameters as well as the estimated object poses. In addition, we also
provide source code templates as well as wrappers of our method
for the popular physics engine BULLET [Cou05].

Preprocessing. In preprocessing, we estimate the 3D model pose
with respect to the image by silhouette alignment [RRB12] or cam-
era pose estimation [SSS06, LPT13]. Other object pose estimation
methods can be also used. The 3D model can be known a priori
(e.g., from measurements or when 3D printing) or captured in many
different ways such as from RGBD cameras [IKH∗11], smartphone
cameras [TKM∗13], from a single image [CZS∗13], or from on-
line public repositories of object 3D models (e.g., 3D Warehouse
or Turbosquid) [AME∗14]. We will show results with models ob-
tained for some of these cases. Our main contribution (Section 3)
does not rely on or assume a specific preprocessing technique.

The silhouette of the object is cut out from the input video, and
can be filled from a given background plate to create a foreground
completed video. In some of our examples, the background plate

was not available (Figure 1 and Figure 6), so we compute it using a
patch-based approach [XLYD11], like Chen et al. [CZS∗13] in the
context of single image-based object manipulation.

In practice, the object silhouette might have a few pixel inaccu-
racies. We found that a trivial-but-effective method is to slightly
increase the model size (e.g., by 1 percent). This size change is
visually unnoticeable and makes sure that the object in the input
video is entirely covered.

Control force estimation. To minimize the energy of Eq. 1, we
use the interior-point algorithm of Waltz et al. [WMNO06] avail-
able in KNITRO [BNW06]. We set fi = 0 for all vertices as initial
solution since the forces are expected to have a small magnitude.
We set λ to default values that could be adjusted by the user if
needed. The physics simulation of the forces is performed with the
physics engine BULLET that is directly called from the optimiza-
tion routine. The physics engine returns the position of the mesh
vertices obtained by the optimal control forces. Finally, this mesh
is rendered in OpenGL with texture mapping from the input image
(the position of the triangles in the input image is known) and is
then displayed in the foreground completed video.

4.2. Applications for videos

We invite the readers to see the video results available in the sup-
plemental material. The results, detailed in the following, depict
different properties and cases, such as recovery of extreme pose
with deformable object (“puppetry” Figure 1), smooth motion and
small required rectification (“board” Figure 4), and sudden motion
with rigid pieces (“fracturing” Figure 6).

Puppetry. We show an application relevant to post processing
recorded sequences of puppetry as an artist is moving a puppet
through the scene. Here we imitate a classic cartoon effect [TJ81],
i.e., when the artist stops the motion, the puppet still moves in its
deformable regions. We obtained the 3D model of the puppet by
KinectFusion [IKH∗11]. Figure 2 presents a result, and Figure 1
shows some frames of the resulting sequence. To visually hide to
young viewers the fact that this puppet is just an object manipulated
by a person, we also inpainted the artist’s hand with the computed
background plate. The result for the full sequence is provided in the
supplemental video.

Board sequence. We present an additional example where we
turn a flat, rigid board observed in a given input video into a piece of
cloth (see Figure 4). The 3D model of the board is simply obtained
by defining a box with the real measurements of the board. The user
chooses anchor points on the parts which should not be affected by
the physical simulator. In this example, the anchor points are the
board vertices where the board part is held by the hand (otherwise
the simulated object will just fall down). As in any physics simula-
tion tool, the user specifies the physical parameters of her choice,
such as material properties, to mimic a cloth effect. The optimiza-
tion is then automatically performed, and our program generates
an output video showing the rigid board moving like a cloth with a
physically plausible motion. This is an effect which would require
a tremendous amount of user interaction in existing video editing
tools. Also note that the cloth moves in agreement with the board
motion. Constraints on normals are implicitly enforced to prevent
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(a) (b) (c) (d) (e)

Figure 4: (a): frame from the input video, (b): model pose align-
ment, (c): standard unconstrained simulation, (d): our image-
aware physics simulation, (e): our textured result from (d).

Figure 5: Editing the stiffness properties of the belly of a 3D
printed figurine.

the board from flipping to its backside via Eq. 2, as those parts are
not visible in any frame of the input sequence.

3D printed characters alive. In our last application use case, we
modify a video of a 3D printed figurine. By virtually changing its
material properties, we can turn it into an “alive character”, quoting
Coros et al. [CMT∗12]. The 3D model is obtained from the online
public repository Turbosquid and we use it for 3D printing. Our
program allows a wide range of deformation, such as changing the
stiffness of the belly (see Figure 5). This visual effect is entertaining
since regular 3D printed objects are inherently rigid and look inert,
and they suddenly appear as alive in the output video.

4.3. Applications for single image

Our method can also be naturally applied on single pictures. We
show here an example of object fracturing from a single picture.
The object model is first decomposed into a set of rigid pieces by
a standard fracturing tool (Shatter tool in Maya). These pieces are
sent to a rigid body simulator with multi-body collision BULLET.
The challenge is to let each of these pieces fall in a way to not
violate the image constraint. The constraints are applied to the tri-
angles corresponding to the surface of the object model and their

Figure 6: Object fracturing from a single image. Input picture of
a 3D printed object (very left) and some snapshots of the output
fracturing video obtained by our approach.

“more” “same” “less”
appealing appealing

small required rectification 22% 78% 0%
middle required rectification 57% 43% 0%
large required rectification 85% 15% 0%

Table 1: User study results of our approach compared to the un-
constrained method for videos with different amounts of required
rectification. See text for details.

texture is taken from the input picture. Triangles which belong to
the inside of the object are not considered in the optimization and
we assign them a uniform texture. We apply our method on the
same model as the belly stiffness experiment (Figure 5) to demon-
strate that our method can be applied to a same object in different
contexts, i.e., non-rigid deformation with a single object and rigid
body simulation with multiple objects. Figure 6 shows a represen-
tative result where a single picture of the 3D printed object is auto-
matically converted into a fracturing video.

4.4. Evaluation

User study. We conducted an evaluation with a user study. We
asked participants to compare the textured video results obtained
by the unconstrained simulation and our proposed method. We re-
cruited 13 participants, and each participant watched 9 pairs of
videos (unconstrained and ours). For each pair, the participants
were asked to choose the more appealing video. In the case the par-
ticipants could not see a difference between the two videos, they
had the option to choose “same” quality.

The 9 videos were classified into 3 main groups (3 videos per
group) based on the number of triangles becoming visible dur-
ing the (unconstrained) physics-based simulation, i.e. the amount
of needed rectification: small (e.g., “board” Figure 4), middle
(e.g., “fracturing” Figure 6) and large (e.g., “puppetry” Figure 1).

The results are contained in Table 1. “more”, “same” and “less”
respectively refer to when our results were rated more, same or
less appealing than the unconstrained result. For example, for the
group where a large number of triangles becomes visible (large re-
quired rectification), the visual appeal was rated “same” in 15%,
and our results were preferred in 85% of the experiments. Table 1
also shows that our method is more preferred when the amount of
required rectification becomes larger. This is because the texturing
artifacts become more visible when more violating triangles are not
handled properly by the unconstrained approach. On the other end
of the rectification spectrum, Table 1 also indicates that when the
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Figure 7: Comparison of the area of the violating triangles (i.e., the
triangles that are occluded in the input frames but become visible)
obtained without and with the image-based visibility constraint.
The area is computed in percent of the total visible area. Left: result
for the puppetry sequence (Figure 1). Right: result for the fractur-
ing sequence (Figure 6).

amount of required rectification is small, the visual appeal is of-
ten rated “same” (78% of the experiments). It shows that when the
number of triangles to be fixed is small, our method appropriately
modifies the physics only slightly, and thus the results look similar.

Quantitative evaluation. We compare the screen space error of
the violating triangles, i.e., the triangles which should not become
visible, for the results obtained by the image-blind (unconstrained)
approach and our approach. For each image, we define the error as
the percentage of the object area corrupted by violating triangles in
the image, i.e., the area of the violating triangles occupied in the
image over the total area of the object (all the visible triangles) in
the image. Figure 7 shows the resulting errors for the puppetry and
the fracturing sequences. In the initial frames when the object does
not move a lot, both approaches yield a similar error. However, the
error and hence the visual artifacts of the unconstrained approach
highly increases along the frames, contrary to our approach. For the
fracturing sequence composed of several object pieces and without
anchor points, this behavior is even more amplified and our ap-
proach significantly outperforms the unconstrained approach.

For occasional frames of the puppetry sequence, the error of our
approach is temporarily larger than for the unconstrained approach.
We believe that it is simply due to the fact that, considering the
force magnitude and temporal consistency terms (Eq. 3 and Eq. 4),
the global energy at Eq. 1 allows a bit higher error for occasional
frames (e.g., frame index 800) since it then permits to obtain a
much lower error over many frames (e.g., frame index 820-880)
later in time.

We further evaluate how strong the control forces are in compar-
ison to the original forces, i.e., the forces obtained by the uncon-
strained physically-based simulation. Figure 8 shows the magni-
tude of the forces for the board and the fracturing sequences. Over-
all, the original forces dominate over the control forces. The control
forces are zero for most vertices and get activated when triangles
violate the image-based visibility constraint.

On the whole, these experiment demonstrate that our approach
can successfully drive the physics simulation so that the object parts
occluded in the input video do not become visible during the simu-
lation, which in turn provides more visually appealing results.

Figure 8: Comparison of the magnitude of the original and control
forces. Left: result for the board sequence (Figure 4). Right: result
for the fracturing sequence (Figure 6).

4.5. Failure cases and limitations

As discussed, the energy is optimized at each frame (Section 3.3).
A failure scenario is when an object becomes rapidly unoccluded,
and therefore large forces need to be suddenly exerted. If different
control forces had been applied earlier in time, this could have led
to a different, eventually better, configuration. Such configuration
could be obtained by performing the optimization over the entire
sequence, rather than per frame. However this is computationally
expensive due to the high number of accumulated DOFs. In practice
we just optimized over a temporal window of 10 frames, which is
also used for temporal consistency (Eq. 4).

Our method can successfully handle challenging situations in
terms of triangles becoming visible (see Figure 2). However, for
complex cases where the motion is too extreme, preventing unob-
served triangles to become visible can result in unnatural physical
behavior, which in turn might lead to visually unpleasing results
(see bouncing ball in the supplementary video).

In our setup, solving for the external control forces is rather com-
putationally involved, in the order of about 10 seconds per frame.
The main reason is that the gradient of the energy defined in Eq. 1
cannot be expressed analytically. Thus each individual energy par-
tial derivative is computed via central differences. This is the cost
to ensure generality, not assume any particular engines or simula-
tion methods, and allow the user to use her favorite physics engine.
If execution time is an issue, a potential approach is to perform op-
timization on a relatively low-resolution mesh that could be then
upsampled. Another potential strategy is a coarse-to-fine optimiza-
tion scheme with a multi-resolution mesh, i.e., the optimized con-
trol forces obtained at a certain mesh resolution level is used as ini-
tial solution for optimization on a finer resolution of the mesh. An
alternative optimization approach is to conduct random sampling
over the control forces parameters [BB12, TJ07].

4.6. Future extensions

Our current system runs a physically based simulation on triangle
meshes, and yields plausible physically manipulated videos for a
variety of physical interactions, such as rigid motions, cloths and
elastic bodies. The proposed formulation could also be naturally
extended for tetrahedral meshes, where only the triangles on the
object surface are considered for the visibility constraint.

A triangle could be occluded in one frame, but may be visible
in an earlier or later frame. Hence, the visible texture of this frame
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could be reused. However, we observed that this quickly introduces
shading inconsistencies. Instead, our approach deliberately consid-
ers the triangle visibility only in the current frame. An interesting
direction for future work is to analyze and exploit shading consis-
tency throughout the image sequence.

Our current preprocessing is dedicated to rigid objects. Track-
ing of deformable objects is outside the scope of this paper. Exten-
sion of our approach to such models, e.g., with the aid of non-rigid
alignment techniques [NFS15, SSP07], is an interesting direction
for future work.

The visual quality of the results is influenced by the values
of the physical parameters set by the user, such as the stiffness.
However it is well admitted in the field of physics based simula-
tion that manually setting these parameters is not trivial in prac-
tice. In future work, we plan to investigate the automatic estima-
tion of the physical parameters of a deformation from exemplar
videos [BTH∗03, MBT∗12].

As discussed, our approach assumes a complete 3D model of
the object. Running physics based simulation and our optimization
with an incomplete 3D model, which may be generated from the
input video directly [SSS06, TKM∗13], is subject to future work.

Figure 7 evaluates how our approach is able to reduce the amount
of violating triangles. More thorough analysis of our external force
magnitudes could lead to an improved solution or user interface.
For example, we could vary the temporal consistency and optimiza-
tion window depending on the maximum external force. This could
help diffuse forces at the cost of computation time. Alternatively,
the external force magnitudes could be interpreted as a measure of
how much the constrained simulation remains faithful to the uncon-
strained physics-based simulation. We believe that this information
could guide automatic optimization of physical parameters (e.g.,
stiffness) or notify a user that a parameter choice has lead to a po-
tentially unfaithful result.

5. Conclusion

In this paper we present a method which allows editing the con-
tent of an image or a video, while leveraging modern physically
based simulation techniques. This is achieved by computing a set
of external control forces to enforce an image-based visibility con-
straint which in turn ensures proper texturing. We have successfully
demonstrated our framework to various examples, such as clothes,
soft bodies, and rigid bodies.
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