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Abstract. Compressed sensing-based iterative algorithms can recon-
struct high-quality CBCT from undersampled and noisy projection da-
ta. However, a practical implementation of these methods still remains a
challenge due to the heavy computation. We implemented an algorithm
by combining simultaneous algebraic reconstruction technique (SART)
and total variation (TV) regularization for the CBCT reconstruction
from few views. More importantly, we introduced approaches to fit the
SART and TV into the GPU architecture. Experimental results showed
that our GPU accelerated algorithm could obtain good reconstruction
quality from 20 to 40 projections, as well as significant gain in time per-
formance. It only took 29.1s for reconstruction from 120 projections with
40 iterations. The proposed method has potential to make iterative-based
CBCT reconstruction more accessable for routine clinical applications.
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1 Introduction

Cone-Beam Computed Tomography (CBCT) has been widely used in medical
diagnosis and image guided radiation therapy. X-ray radiation dose is still a
clinical concern for patients’ safety, especially for pediatric patients. The imag-
ing dose can be reduced by using less X-ray projections. However, this should
result in the degradation of quality of reconstructed images. A new sampling
theory, compressed sensing (CS), has demonstrated the feasibility of recovering
signals from incomplete measurements through optimization methods in vari-
ous mathematical situations [1]. Past studies have shown that iterative image
reconstruction (ITR) based on a constrained L; or total-variation (TV) optimiza-
tion has been particularly useful for CBCT reconstruction from few views and
noisy projection data. Y. Sidky et al. introduced a TV method called adaptive
steepest descent projection onto convex sets (ASD-POCS) for incomplete da-
ta reconstruction [2,3]. Jia et al. presented a method by minimizing an energy
function which consists of a data fidelity term and a TV regularization term [4].



These algorithms optimized the raw data and sparsity cost functions separately
in an alternating manner. The performance of these methods relied on too many
regularity parameters. Similarly, Ritschl et al. proposed an improved TV-based
CT image reconstruction method by transferring the step-size determination of
two optimization procedures into the raw data domain [5]. Choi et al. built a CS
problem based on Ll-norm minimization constrained by statistically weighted
least-squares of CBCT projection data [6].

Although these methods perform well under certain circumstances, currently
filtered back projection (FBP) remains the most popular method in clinical CT
[7]. The reason is that a practical implementation of these methods still remains a
challenge. The main problem is the iterative nature in solving the TV-based IIR,
which requires multiple iterations of forward and backward projections of large
datasets and cannot be completed in a clinically feasible time frame. General
purpose graphic processing units (GPUs) have shown great power in increasing
efficiencies of heavy duty tasks in medical image processing. Much of the resent
work has explored it in CT reconstruction, reducing the computational time from
several hours to few minutes. Our previous work applied CUDA to the 3D CBC-
T reconstruction using simultaneous algebraic reconstruction technique (SART)
[8,9]. Xu et al. studied the generalization of simultaneous iterative reconstruc-
tion technique (SIRT) into ordered subsets SIRT to find the optimal number
of subsets as well as relaxation factor settings for optimizing the computational
performance [10]. Furthermore, Xu and Mueller presented a framework targeting
GPU acceleration of iterative reconstruction algorithms as well as exploiting G-
PUs to optimize their parameter settings for a given quality/speed performance
objective [11].

We implemented an algorithm combining SART algorithm with TV regular-
ization, and accelerated it with GPU. While each of these methods has been
described individually in the literature, GPU accelerated SART with TV reg-
ularization is new for CBCT reconstruction. We introduced approaches to fit
the SART and TV into the GPU architecture: ray-driven projection along with
hardware built-in trilinear interpolation, voxel-driven back-projection and TV
minimization to avoid redundant computation. Experimental results show that
our GPU accelerated algorithm can obtain good reconstruction quality from 20
projections, as well as significant gain in time performance.

2 Methods

2.1 Imaging Model

Figure 1 illustrates the principle of CBCT imaging. We consider a volumetric
image represented by a function v(x) with x = (z,y,2) € R3. A projection
operator Py maps v(x) onto another function on an x-ray image plane along a
projection angle . In the discrete setting, v is divided to a 3D grid, with a total
number of N voxels and the projection image P is a 2D grid with w x h elements
(w and h is the width and height of the projection image respectively). Each
of the voxel values v; is assumed uniform. Then, the objective of reconstruction
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Fig. 1. Illustration of the principle of CBCT imaging

is to estimate all v; from a set of projections p acquired from different X-ray
source orientations along a circular trajectory. The cone-beam projection-data
vector p can be written as weighted sums over the pixels traversed by the X-ray
as:

N
pi= Y wi;v (1)
j=1

where ¢ = 1,2,..., M. The M = w X h X projpum is the total number of rays
from all projections and proj,um is the number of projection orientations. The
weight component w; ; of the system matrix W is computed by the intersection
length of the i-th ray through the j-th pixel. Thus the reconstruction problem
can be transformed into an algebraic equation, which can be simply expressed
as Wwv = p, where v represents the unknown N voxels in the volume, which is
a IV x 1 vector. p is a M X 1 vector storing all pixels in the set of k£ projection
images, and W is a M x N matrix.

2.2 The Proposed Algorithm

The use of constrained TV minimization for CT reconstruction is derived from
recent theory in CS [1], where certain sparsely sampled linear systems can be
inverted accurately when the underlying object has an approximately sparse
gradient magnitude image. In tomographic imaging applications, images formed
by taking the magnitude of its gradient could be approximately sparse. In Sid-
ky’s ASD-POCS [2], ART is used to update an image reconstructed for data
discrepancy reduction first, and then the adaptive steepest descent technique is
used in an iterative framework for TV minimization. These two steps are itera-
tively performed in an alternating manner. Algorithm 1 shows the pseudo-code
of the proposed algorithm; we apply SART to enforce projection data consis-
tency, and then adaptive gradient descent is employed to reduce total variation.



Algorithm 1: Pseudo-code of the proposed algorithm

nd <4, 8+ 0.25, Ymaz < 0.95, Ypeq < 0.95, v <0

iter_num < 10 //number of iterations of the main loop
for (i = 0; i < iter_num; i++) do
Vo < U

for (j =0; j < proj_num; j++) do //SART loop
Projection: Compute line integrals p; for all rays of P,
Correction: Subtract the calculated line integral from projection

p; in the projection image, and normalize it

Back-projection: Distribute corrections onto voxels
Update: Update v

end for

for (j = 0; j < vol_-num; j++) do //enforce positivity
if v; <0 then v; <~ 0 end if

end for

dp + |v — v

if first iteration then dtvg < 0 end if

Vg < VU

for (i = 0; i < nd; j++) do // T'V-steeptest descent loop
dv < Voljv|rv

dv « dv/|dv|
v<+—v—dv
end for

dg < |v — vy
if dg > Ymae then ditvg < dtvg - Yyeq end if
return v

2.3 GPU Implementation

The whole process starts with loading of the projection data P from CPU to
global memory in GPU, together with an initialization of volume v in the texture
memory. The volume v is initialized with all-zero. Then in each iteration of the
main loop, for each viewing orientation in the SART loop, the volume v is bound
to a texture memory and projected in the viewing orientation ¥ consistent with
the projection Py, so that their difference forms the corrective image. Later, the
corrective image is back-projected to the volume v in global memory to update
the volume. After the process repeats for all the projections, the TV of the
volume is reduced adaptively in the TV-steeptest descent loop.

CUDA-accelerated SART Reconstruction. A large number of computa-
tionally intensive tasks involved in SART share a common feature, which means
we can apply a single operation to different parts of the data elements. In the
SART algorithm, for a viewing orientation v, a projection image P, is com-
puted. Then, each voxel is corrected by an accumulated correction that is due



to all pixels in Py. In the back-projection step, voxels are corrected by the ac-
cumulated correction. It can be divided into four steps: projection, correction,
back-projection and update. We combine the first two steps to a projection ker-
nel function for computing errors of the projection image, and combine the last
two steps to a back-projection kernel for updating the volume on GPU.

For each viewing orientation, there are wx h (w and h is the width and height
of the projection image respectively) rays emit simultaneously in the projection
stage, so we can use a ray-driven method for the projection and error image
computation, i.e., each thread computing a ray in the projection kernel. For a
projection image with w x h pixels, we assign w x h threads. The corrective image,
i.e., the errors of projection image p; computed and the true projection data p;
is calculated by the following equation: ¢; = (p; — pl)/ 25:1 W;n, Where ¢ =
1,2,--- ,wx h, N and wy, are described in Subsection 2.1. The reason to design
in this way is that parameters used in this equation are all independent along a
ray. Hence, the ; can be computed in parallel, leading to the improvement of
computation efficiency.

For the back-projection and updating kernel, we choose a voxel-driven method,
i.e., each thread computing and updating a voxel. For a volume with N voxel-
s, we assign at least IV threads and each thread is used to compute a voxel
according the equation:

> (eiwiy)

(k+1) _ (k) iEly
’Uj = ’Uj -+ ﬂW (2)
i€l,

where v§k) means the j-th voxel value in the k-th iteration; 3 is relaxation factor,

range from 0 to 1 and is usually set to a small value. In the following experiments,
B is set to 0.25.

As seen in the Eq. 2, each voxel can be computed independently. Here the
volume data must be stored in global memory because texture memory is read
only and can’t be updated. Once a voxel’s back-projection is completed, the voxel
v; can be updated based on ¢;. Readers can refer to [9] for more implementation
details.

CUDA-accelerated TV Minimization. For each voxel v, , of v , its gra-
dient can be computed by the following equation:

(Va2 = \/(Uac-&-l,y,z —Vay,2)” + (Voyt1,2 = Vay,2)? + (Vayz41 — Vay,2)?
(3)
where x, y, z are the position of a voxel in the volume v. Eq. 3 is valid only
for non-border voxels. The gradient can also be thought of as a volume, where
each voxel value is the partial derivative of the image TV with respect to that
voxel. For parallel computing, we take the derivative with respect to each voxel
resulting in a singular expression, which can be computed by a thread. The



approximate derivative of each voxel in the gradient volume can be computed
as follows:
Ilvlrv 3Veyz —Va—1yz — Vay—1z — Vaye-1

avw’?‘/’z \/(Uw,yyz - v:v*Ly’Z)Q + (Uz,y,z - Um’y*1,2)2 + (vx,y,z - Uw,y,zfl)Q +¢

Vz41l,y,z — Vay,2
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Vz,y+1,2 — Va,y,2
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Vzy,241 = VUzy,z
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(4)

where ¢ is a small positive number to avoid dividing zero. Here, we set £ = 1078,
For the TV-steeptest descent loop, the most time consuming step is the com-
putation of 9||v||rv /0vs ... We also use a voxel-driven method, i.e., each thread
computing the derivative of a voxel. With N voxels of the volume, we assign at
least N threads. According to [2], in the actual algorithm, we also employ the
normalized TV gradient. In this regard, we need to sum the derivatives of all the
voxels. Here, we adapt the optimized reduction algorithm in the CUDA SDK.

3 Results

All experiments were conducted on a desktop PC equipped with a Interl(R) X-
eon(R) CPU (W3505, 2.53GHz), 4 GB memory and an nVIDIA GTX680 GPU
with 8 multiprocessors, 192 cores per multi-processor and CUDA 4.2. We first
evaluated the quality of images reconstructed from various numbers of projec-
tions using our method and compared them with the images reconstructed using
SART only. Then, we implemented a CPU version of our method and compared
it with our GPU version.

We present the CBCT reconstruction results on a digital Shepp-Logan phan-
tom?. This phantom is often used in evaluating tomographic reconstruction algo-
rithms. The phantom was generated at head region with a size of 128 x 128 x 128
voxels. The x-ray imager was modeled to be an array of 256 x 256 detectors. X-ray
projection images of the phantom were generated along various equally spaced
orientations and were then used as the input for the reconstruction.

3.1 Reconstructed Image Quality from Few Views

In case of CT reconstruction from few views, iterative reconstruction methods
such as SART perform better than analytical method such as FDK, in spite of

3 3D Shepp-Logan phantom. http://tomography.o-x-t.com/
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Fig. 2. Reconstructed images (70th Slice) from different projections with 40 iterations.

heavy computation [12]. The CS-based reconstruction algorithms such as our
method are supposed to further reduce the number of projections. In Algorithm
1, the length of the measurement P and the number of rows of the system ma-
trix W are linearly proportional to the number of projections. So the projection
number has great effect on the problem size and hence the computation time per
iteration. To improve the computational efficiency as well as to ensure accept-
able reconstruction quality, we need to choose a proper number of projections
proj_num. Another key factor is the iterative number iter_num.

The reconstruction results based on the proj_num = 10, 20, 40 and 80 pro-
jections with 40 iterations are drawn in Fig. 2 respectively (the 70th axial slices
are presented representatively). For comparison, the image reconstructed from
SART only as well as the ground-truth image are also given. From Fig. 2, it is
observed that with 40 iterations, SART+TV algorithm can achieve much better
results than SART algorithm when the proj_num = 10, 20 and 40, as it effec-
tively reduced the artifacts due to incomplete projections. To show the effects of
the iteration number of the main loop, axial slices of the reconstruction results
based on proj_num is 20 with iter_num is 10, 20, 40 and 80 are presented in
Fig. 3 respectively. Fig. 3 further demonstrates that the image quality of our
method is always better than that of SART at various iteration numbers.

To compare the reconstruction results quantitatively, correlation coefficient
(CC) of the reconstruction results and the ground truth are calculated according
to the following equation [13]:

I

To fully evaluate the performance of the algorithms, CC of the reconstructed
volumes and the ground truth from different projections with different iterations
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Fig. 3. Reconstructed images (70th Slice) from 20 projections with different iterations.

are shown in Fig. 4 (SART(20) means SART algorithm from 20 projections).
From Fig. 4,we can see that TV minimization greatly improved the CC when
proj_num = 20, 40; and when reconstruction by SART+TV from 20 projections
with more than 80 iterations, the CC gets closer to that obtained from 120
projections with more than 10 iterations by SART. This means we could use
much less projections to get as accurate reconstructed images as those from 120
projections, leading to reduction of X-ray radiation. Fig. 4 also shows that when
proj_num is more than 80, SART could reaches convergence far more quickly
and it seems SART+TYV has no advantages compared with SART.
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SART+TV(40) |
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----- SART+TV(80)
SART(120) |
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Tteration numbers

Correlation coefficients

Fig. 4. Correlation coefficients of the volumes reconstructed and the ground truth from
different projections with different iterations.

3.2 Time performance

Table. 1 shows the time statistics for reconstruction of the Shepp-Logan phan-
tom sized 128 x 128 x 128 from various numbers of projections sized 256 x 256
with different iterations of the main loop. The hardware configuration especially



Table 1. Execution time of reconstruction using various projections and 10/40 itera-
tions, with CPU and CUDA-based implementation.

Implementation CPU GPU GPU CPU GPU GPU GPU GPU
(10,10) (10,10) (10,40) (20,10) (20,40) (40,40) (80,40) (120,40)

SART 3205.79 0.44 1.73 6449.91 3.42 6.82 13.4 24.42

SART+TV 3214.51 2.56 10.31 6514.31 11.94 15.23 21.86 29.1

Table 2. Execution time of reconstruction process using 40 projections with CUDA-
based implementation,and with different projection resolutions

Projection size 256 x 256 512 x 512 768 X 768 1024 x 1024
(40,20) (40,40) (40,20) (40,40) (40,20) (40,40) (40,20) (40,40)

SART 3.61 6.97 527 10.58 842 16.7 13.18 26.27
SART4+TV  7.64 1523 9.56 19.06 12.59 25.04 17.3 34.47

the GPU specification is much higher than that used in our previous work, and
we used less projections to reconstruct the volume by combing the TV Regular-
ization, so we obtained very good speedup values as presented in Table. 1. The
time recorded was that the main loop took both for the CPU and GPU version of
Algorithm 1. The data also included the overhead of copying data from the CPU
memory to the GPU memory for the GPU version. From Table. 1 we can see that
CUDA-based implementation greatly reduced the reconstruction time compared
with CPU-based implementation. It only takes 29.1s for reconstruction from 120
projections with 40 iterations.

Table. 2 shows the time statistics for reconstruction of the Shepp-Logan
phantom sized 128 x 128 x 128 from 40 projections with different resolutions via
the GPU version of SART and SART+TV, respectively. Compared with SART,
SART+TYV takes more time due to the TV minimization loop. However, the
total time of SART+TYV is still acceptable for practical applications.

4 Conclusions

SART and TV was combined and accelerated with CUDA-based GPU for CBC-
T reconstruction from few views. Experimental results showed that our CUDA-
based implementation could obtain good reconstruction quality from 20 to 40
projections, as well as significant gain in time performance. It only took 29.1s
for reconstruction from 120 projections with 40 iterations. In addition, TV
minimization greatly improved the quality of the reconstructed image when
proj_num = 20, 40; and when reconstruction by SART+TV from 40 projec-
tions with about 30 iterations, the quality of the reconstructed image was close
to that obtained from 120 projections with more than 10 iterations by SART.
When proj_num was more than 80, SART could reached convergence far more
quickly and it seemed SART+TYV had no advantages compared with SART. The
proposed method has potential to make iterative-based CBCT reconstruction
more accessible for routine clinical applications.
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