
A GPU-Accelerated Finite Element Solver for
Simulation of Soft-Body Deformation

Jianying Li*, Yu Guo*, Ping Liu, Qiong Wang, Jing Qin
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Shenzhen, China 518055
The Chinese University of Hong Kong

Email: {jy.li, yu.guo, ping.liu, wangqiong, jing.qin}@siat.ac.cn

Abstract—A nonlinear physical simulation is presented in-
volving the soft body deformation and interaction contacts. We
demonstrate the finite element method relying on Lagrangian
discretization to simulate the deformation of the soft body with
hyperelastic material properties. To perform a stable simulation,
we use the constrained Delaunay Tetrahedralization to resampling
and remeshing the object. A new contact strategy is developed
and used to replace the collision detection. This method does
not need to iteratively achieve the optimal contact response on
the constrained boundary. It can dynamically determine whether
the contact status of the point should be in a static or a sliding
friction mode. The explicit method for the finite element model
is employed in order to perform all the steps of the algorithm on
the GPUs and achieve a real-time simulation.

I. INTRODUCTION

Nowadays, soft body simulation has become an very im-
portant part in the animation filming, game development and
virtual reality system creation. To achieve a realistic simulation
of the soft body deformation, the Finite Element Method
(FEM) is widely used. It is one of the most effective numeric
methods to solve the linear and nonlinear multi-dimensional
problems, because it allows the modeling of the systems with
complex geometries and irregular physical structures in a high
precision. To solve the dynamic problems with the FEM, two
kind of time integration schemes are frequently used, implicit
and explicit. The explicit method is easier to obtain the result
than the implicit method.

One disadvantage of the FEM is that it needs long compu-
tation time, especially for the nonlinear systems. In addition,
its implementation is a challenge, as it requires experience to
define the problems such as the mesh generation. An accurate
three dimensional model with a fitting mesh approximating
to the finite element model is the basis of the simulation.
Accurate modeling and computational efficiency is a dilemma
for the dynamic simulation. To solve this problem, a rich
and diverse studies have been concerned on accelerating the
FEM on Graphic Processing Units (GPUs), especially since the
Compute Unified Device Architecture (CUDA) was released
by NVIDIA in 2007. The Nvidia’s CUDA API is widely used
in the programmable GPUs, because it allows the programmer
directly control the computing and memory resources.

Besides, the texture memory developed in the graphics
cards provides a transfer probability from the CUDA API to

* joint 1st authors

OpenGL graphics API. Due to this property, the results of
the vertex can be effectively displayed on the screen from the
texture tunnel. Furthermore, the cores in Kepler architecture
provided since 2012 are three times faster than that in the last
Fermi GPU, and texture units are twice larger. With the help
of the high speed development of the hardware, there is no
doubt that it would provide more powerful tools to solve the
gigantic calculations of soft body simulation.

The external forces of the deformation are mainly generat-
ed from the collision. Compared with the collision detection of
the rigid bodies, collision detection of the soft bodies is much
more complex. Not only the finite element analysis should infer
the deformation of the soft bodies in each time step, but also
the constrained optimization problem at the contact requires
to be considered.

In this paper, we proposed an efficient numerical algorithm
to compute the deformation of the soft body with constrained
boundary in real time. This algorithm is based on the finite
element method using the explicit scheme and a projection
contact model with the Constrained Delaunay Tetrahedraliza-
tion. We also gave a fast collision detection model fitting for
the corresponding computation on GPUs. The whole algorithm
is accelerated on GPUs to obtain a real-time deformation
simulation of the soft body.

II. RELATED WORKS

The FEM is the classical method to solve the elastic
mechanics problem. With the development of the hardware,
it becomes the mostly popular method to simulate soft body
deformation for now. In 2011, Faure [1] introduced a mesh-
less model using the FEM and Simonovski [2] meshed the
object with a set of the spatial points. Irving [3] proposed
a deformable model based on the FEM to enforce the local
incompressibility. Euler method is usually used to simulate the
large deformation, such as the water simulation. Levin [4] re-
solved the frictionless interaction among multiple deformable
objects with the Eulerian simulator. Miller [5] used the total
Lagrangian FEM to simulate the soft tissue deformation. Sue-
da [6] combined the Lagrangian and the Eulerian approach, to
handle the large-scale simulation of highly constrained strands.

To solve the dynamic problems with the FEM, two time
integration methods are frequently used, implicit and explicit
method. The advantage of implicit time integration is its good
stability, such as the Newmark method [7] and the Wilson

978-1-4799-1334-3/13/$31.00 ©2013 IEEE

Proceeding of the IEEE
International Conference on Information and Automation

Yinchuan, China, August 2013

631

θ method [8]. For the linear problems, the time step can be
arbitrarily large; for the nonlinear problems, the time step size
must be very small due to the convergence difficulties. In the
explicit time integration, it will be stable only if the time step
size is smaller than the critical time step size. Due to this, the
explicit method is very useful for the deformation simulation
occurring in short transient.

Soft bodies generally exhibit nonlinear and elastic prop-
erties under the large deformations. Linear elastic model is
adequate to the small deformation simulation and is easier to
solve. But in real condition, the material is more complicated
and the linear model is insufficient. Müller [9] presented a
mesh-free animation algorithm that could simulate a wide
range of elastic and plastic deformations. Non-linear hyperelas-
tic model and anisotropic behavior is closer to the materials in
reality. For the simplification, isotropic or orthotropic behavior
was used in the special models. Tanveer [10] presented a mixed
p-type method to solve incompressible non-linear transient
vibration. In addition, a viscoelastic behavior of soft bodies
has been implemented in the finite element method recently.
Taylor [11] established an efficient procedure to simulate
anisotropy and viscoelasticity materials. In different models,
different constitutive equations were proposed to indicate the
relationship between strain and stress. Gilles [12] presented a
frame-based meshless model with arbitrary constitutive laws.

For the collision detection, the recent algorithms presented
were mainly based on iterative and local optimization tech-
niques to resolve the soft or solid bodies contact problem. kauf-
man [13] introduced a non-smooth contact model based the
simulation of rigid bodies. Bertails [14] introduced a method
to compute self-contacts with the presence of the friction.
Daviet [15] introduced a robust iterative solver to compute
the friction effect. Je [16] solved the Linear Complementarity
Problem (LCP) with the Gauss-Seidel iteration.

To achieve the fast computation and real time interac-
tion, parallel computing using the hardwares like graphics
processing units is a new trend. Taylor [17] accelerated the
total Lagrangian method with GPUs. Allard [18] applied their
collision detection method, contact modeling and constrained
solver for the animation simulation on GPUs. NVIDIA [19]
simulated a perfect water flow using the Eulerian method with
the graphic card. Dick [20] tested a hexahedral-based elasticity
simulation using CUDA on Fermi GPU, and achieve 14 times
of speeding up compared to a 2 cores CPU. Hahmann [21]
presented an explicit formulas to solve the volume preserving
free form deformation with GPUs.

III. METHODS

Before applying the finite element algorithm to the soft
body deformation, a three dimensional Delaunay Mesh Gener-
ation method [22] was used to create the tetrahedralized model
of the object. With this method, soft body can be properly
splitted into tetrahedras with stable properties.

A. Finite Element Simulation

In the proposed approach, the deformation progress is
simulated with a nonlinear finite element method. Given the
initial coordinates of the nodes {x0}, the spatial positions of
the nodes need to be updated in each time step. Therefore,

the most important thing is to evaluate the global nodal
displacements. For the displacements, we use a 3n-vector u
to represent.

From the principle of the FEM method, we consider a so-
lution using the standard equilibrium equations for a nonlinear,
dynamic, damped finite element model:

Mü+Du̇ = r − f(u) (1)

where u̇ is the velocity vector of the nodes, ü is the accelera-
tion vector, and dot notations indicate the time (t) derivatives.
M is a 3n× 3n mass matrix , D is the damping matrix with
the same size, f(u) is the internal force vector dependent on
the displacement vector of u, and r is the vector of the external
loads.

The force applied by the internal deformed element to the
nodes is given by:

f = BTσ = BT ∂W

∂ε
(2)

where B is the strain-displacement matrix, σ is the stress, and
ε is the strain. W is a strain energy density function decided
by different constitutive model. A large number of the energy
function have been proposed to solve the deformation of the
soft body. From the this equation, we could see internal force
f also relay on the constitutive model of the soft body.

In previous works [23][24], researchers usually use a
linear elastic constitutive model to simplify the internal force
computation by making σ = Sε, where S is the stress-strain
matrix determining the linear relationship between σ and ε.
Then, the internal force can be recomputed with follows:

f(u) = BTSε = BTSBu = Ku (3)

where K is called the stiffness matrix, which makes the
internal force vector linear with nodal displacement vector.

The problem of this linear strain approximation is that it
cannot correctly model the rotation of the finite element during
the deformation. In the contrary, it was verified in [25] that
the quadratic strain could handle arbitrary large rigid body
motions and the internal force f(u) does not need to be a
linear term of the nodal displacement. Different kind of strain
energy function W can be used to define the internal force.
Therefore, in the current work, we choose to use a hyperelastic
model, named Neo-Hookean constitutive model [17] to solve
this problem.

For the external force r, we consider the gravity, contact
force and other forces exerted by the user. The mass matrix M
is an approximation of the inertia property of the continuum,
including the total mass and moment of inertia. Additionally,
Rayleigh damping is employed in the equilibrium equations,
then, we can obtain D = αM + βK .

B. Explicit method

Generally, soft material has small stiffness in all directions.
This makes the explicit time integration scheme appropriate to
our issues, because we can use a relatively large time step.
Therefore, in this work, we use the central difference method
to handle the time (t) derivatives of the displacement [5]:

tu̇ =
1

2∆t
(t+∆tu− t−∆tu) (4)

632

tü =
1

∆t2
(t+∆tu− 2 tu+ t−∆tu) (5)

where ∆t is the time step. Displacement tu is for current time
step, t−∆tu and t+∆tu is is for the previous and the next time
step. With the equation (1)(4)(5), we can deduce the following
equation:

(
M

∆t2
+
D

2∆t
)t+∆tu = (tr−tf)+

2M

∆t2
tu−(

M

∆t2
− D

2∆t
)t−∆tu

(6)

To solve this equation, the invertion of a large sparse matrix
is necessary in each time step. We make an hypothesis that all
mass of the tetrahedron is lumped to its four nodes, in which
we could get a diagonalizedM . Let α be a constant and β = 0,
then D equals to αM and is also diagonal. The only thing
we need is to precompute the M−1. The internal force tf is
handled as follows:

tf =
∑
e

∫
tBT tσ dV (7)

that we first calculate the internal force for each element, and
then sum them together to get the final internal force for each
node.

With the previous procedure, the nonlinear finite element
equation is simplified into a set of independent algebraic
equations as follows:

t+∆tui = γ1M
−1
ii (tri − tfi) + γ2

tui + γ3
t−∆tui (8)

where γ1 = 2∆t2/(α∆t + 2), γ2 = 4/(α∆t + 2), γ3 =
1 − γ2. ui is the i-th (1 6 i 6 3n) component of u,
ri and fi are the external and internal force element cor-
responding to ui. Mii is the diagonal entry of M , where
M = diag(M11,M22, · · · ,Mnn). Solving this equation sys-
tems doesn’t require complex matrix calculation and is easier
to be resolved with a parallel computing.

Explicit time integration scheme such as the central dif-
ference method can only maintain a conditionally stability. In
linear elastic analyses, time step ∆t should be limited within
a certain area:

∆t = λ∆tcr = λ
Le

c
(0 < λ 6 1) (9)

where Le is the smallest characteristic length of one tetrahe-
dron element and c is the dilatational wave speed. c is given
by

c =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(10)

where E is Young’s modulus, ν is Poisson’s ratio and ρ is
density.

In the explicit time integration, there are two different
kinds of integration styles. One is the Update Lagrangian
formulation, in which stresses and strains rely on the con-
dition of previous step; the other one is the Total Lagrangian
formulation, in which stresses and strains are measured with
respect to the original configuration. In this paper, we employ
the latter one. This choice allows for the pre-computing of
most spatial derivatives before the commencement of the time-
stepping procedure.

C. Contact Constraints

Soft body deforms to different shapes under the effect
of the external forces r. r includes the constant gravity
force and the contact force. In the deformation process, the
stiffness of soft body limits the deformation of itself. On
the other hand, many other objects also constrain the soft
body and give contacts to change the original status. To find
a locally optimal solution to locate the closest point, two
projection approaches were developed to solve the problems
under different situations. Locally optimal solution is obtained
whenever the position of the node, x is in-contact.

Soft body contact with the LCS (Local contact surface) is
simplified as the interaction between several points and the
surface. Then, we consider the interaction between a single
point and the LCS. At first, we rotate the whole model in
order to make the normal of contact surface parallel to the
y-direction. In Fig. 1 and 2, we illustrate two different kinds
of contact models in two dimension.

Fig. 1. The in-projection model of in-contact, t+∆tx is the final in-contact
position of the node.

Fig. 2. The out-projection model of in-contact, t+∆tx is the final in-contact
position of the node.

In Fig.1 and 2, a node with the original position of tx
should be located at the position of tempx during the moving,
if there is no deformation or contact occurring. However, in
reality, this node should be blocked by the contact surface,
therefore we need to find a projection point on LCS for this

633

node. In the in-projection model, displacement of node tx in x-
direction is not changed but shortened in y-direction. It means
that there is no friction in the x-direction between the contact
surface and the node, and node is sliding on LCS. But in
the out-projection model, displacements in both directions are
shortened. This model simulates the situation that the node
contacts with a rough surface and the node stops moving under
effect of the static friction. For both of these two situations,
node will not sticking or sliding for a long distance, because
kinetic friction will finally take effect.

Taking three dimensional situation into account, for the
position of each contact node tx, its displacement t+∆tu in
(8) will have an update:

t+∆tu =t u+ (t+∆tx−t x) =t u+ [ux, uy, uz]T (11)

ux stands for friction ranging from static friction to zero, uy is
a constant value, and uz is same to ux. We define tempx−tx =
[ûx, ûy, ûz]T , and the updated displacements are represented
as below:

uy = distance from tx to LCS

(uy/ûy)ûx = uxout 6 ux 6 uxin = ûx

(uy/ûy)ûz = uzout 6 uz 6 uzin = ûz

(12)

D. Implementation in GPU

Algorithm 1: Deformation Simulation Step

0: Begin
1: Tetrahedralize the surface model to an element model
2: Load the surface and element models
3: Transmit nodes, surface and elements to device
4: Precompute the constant variables [CPU&GPU]
5: do{
6: Compute mass matrix M and external forces r [GPU]
7: Compute internal forces f [GPU]
8: Compute displacement vector u [GPU]
9: Update u with contact model [GPU]

10: For new nodes, u′= old one + u [GPU]
11: Bind nodes to texture memory, display [GPU]
12: }while (TRUE)
13: End

Using CUDA API and OpenGL API, the algorithm was
implemented with GPUs. This tabular shows the complete
progress involving the whole system of deformation simula-
tion. In most of the previous research, the mass computing is
generally done in the pre-computation procedure, because it
changed a little in a small deformation. But in our method,
with the shape changes of the tetrahedra elements during
the deformation, the mass was allocated to different nodes
in a dynamic mode. So, it’s much better to take the mass
computation into the GPU cycles although it will bring some
complexities.

IV. RESULTS

Stability of the GPU computing in the explicit dynamic
solving system is the most essential problem to be considered.
Cube, cylinder or ellipse suitable for the hexahedral mesh are

usually be used, but to handle the complex geometric object,
tetrahedral model is much more helpful. The accuracy of the
deformation simulation is also what we need to focus on. It
relates to the hardware ability, the number of element used,
and the robust of the algorithm.

We firstly used a 10mm diameter torus model with 2145
vertex meshed by 7456 four-node tetrahedron with Tetgen
(Fig. 3). We placed a solid floor 2mm lower than the torus
model and only applied the gravity force to the model to
observe contact performance between the soft torus and the
solid ground. We used C++ with CUDA4.2 and OpenGL4.2 to
develop the contact deformation program, and our experimen-
tal platform mainly includes a 2.4GHz Inter CPU, a 4GB of
memory and a NVIDIA Geforce GTX480 with 1.5GB graphics
memory, and etc.

TABLE I. DETAILS OF MESH IN THREE KINDS OF TORUS MODELS:
OUTER RADIUS IS 10mm; OUTER RADIUS IS 100mm; OUTER RADIUS IS

10mm USING SUBDIVISION

r10 r100 rsub

Input points 1729 1729 6916
Input facets 3458 3458 13832
Input segment 5187 5187 20748
Mesh points 2145 2136 8395
Mesh tetrahedra 7456 7396 27918
Mesh faces 16641 16521 62752
Mesh edges 11330 11261 43229
Boundary faces 3458 3458 13832
Boundary edges 5175 5185 20744

Fig. 3. Left: The PLS torus (1729 nodes, 3458 faces), the outer radius
r = 10mm, the inner radius r = 5mm. Right: The output Delaunay mesh
(2145 nodes, 7456 tetrahedra) at ρ0 = 2.

A. Simulating the Accuracy

The material properties of the soft torus model is a key
factor in the contact model in the measurement of the accuracy
and the facticity of the proposed method. The parameters used
in the experiment are approximate to the human organ. The
density of the tours model is 0.001g/mm3, damping coeffi-
cient α is 10. Young’s modulus of 3000MPa and Poisson’s
ratio of 0.49 for uncompressed material was used in the Neo-
Hookean constitutive model. We employed a conservative time
step about 0.000025s and the total time period is around 0.2s.
For the deformation of the torus, we also implement it with
the ABAQUS/Explicit, in order to compare with the result
using the proposed GPU-based dynamic explicit finite element
method.

In Fig. 4, the above four figures show the displacements in
x, y, z component and the whole displacement for a random
node during the deformation process. The blue lines stand for
the result obtained from ABAQUS and the red lines are the
GPU-based results with the proposed method. It can clearly
find that the distances between these two values are very close.

634

Fig. 4. The error expanded without friction

The figure on the bottom of Fig. 4 shows the demonstration of
the errors between ABAQUS and our method. The average
error of the 2145 nodes in the model is controlled within
0.1mm in the dynamic finite element method for a 20mm
width object. The difference between the GPU-based method
and the ABAQUS/Explict is lower than 0.5% in the first 0.1s.
Our contact detection model is different from the ABAQUS,
and the error after 0.1s begins to increase, but still controlled
within a small range.

B. Simulating the Deformation

Fig. 5 shows the deformation of the torus during its falling
down process. We divide the process into four periods.

Fig. 5. The simulation of soft torus deformation

a) 0s ∼ 0.03s, falling period: In the first 0.03s period,
the torus contacts with nothing but only accelerates to drop due
to the gravity. It can be found that displacements in x and z-
direction are barely zero, and its displacement only raises in
the y-direction due to the falling process.

b) 0.03s ∼ 0.07s, first compressing: From 0.03s,
the torus touches the floor and the contact begins. Under
the constraint of the floor, the torus is compressed in the y-
direction. It is clear that the red line begins to increase, which
represents that an expanding happens in the x-direction. At
0.45s, the deformation is the largest that displacements in both
x and y directions reach the highest. After this second, the
torus begins to recover back to the normal size.

c) 0.07s ∼ 0.15s: continued compressing: At the time
of 0.07s, the torus almost turns back to normal size because the
three lines reach to their smallest values. Then, the torus begins
the second compressing cycle. The damping force makes
displacements of the second deformation smaller than the first
time. If the mesh of the model is absolutely symmetrical and
the damping matrix is neglected, the compressing loop will
never stop.

d) 0.15s ∼ 0.2s: sliding down: After several times of
the compressing cycle (the number of times is decided by the
friction), the torus model begins to slide down in an unbalance
structure. During a series of oscillations, the torus reaches to
a balance state at the last.

C. simulating different friction modes

The meshed torus model is not exactly symmetrical. After
two contacts on floor, the center of gravity is deviated from
the middle line. There produces a large velocity in the z-axis
direction to pull the torus down. A contrast movement happens
when the soft torus begins to fall down. In different models,
it brings different results.

Fig. 6. Above: Fall over with static friction; Below: Sliding down with
non-friction.

Fig. 6 shows what happens when a torus drops onto a slope
surface. From the sequence of figures on the first line, the
torus contacts with the slope and jumps up suddenly, then flips
and falls over from the surface. This phenomenon can traced
back to the model with static friction demonstrated in Fig. 2.
On the bottom figures, the torus slides down along the slope
surface with no friction, illustrating the model in Figure 1.
This example shows that our constraint contact model has the
ability to simulate the interaction force between deformable
object and solid surface under different friction modes.

D. Computational Efficiency

We implemented this improved algorithm on GPUs, and
compared it with the CPU algorithm. Table II shows the
average time of 8000 iterations with different tetrahedron
numbers. The computation time is nearly linear to the tetra-
hedron number when using the CPU algorithm. In contrast,
the computation time of GPU algorithm is reduced around

635

100 times for the 7465 tetrahedrons model compared to the
CPU algorithm. Also, the computational efficiency of the GPU
algorithm improves greatly with the increasing of the number
of tetrahedrons.

TABLE II. GPU COMPUTATION TIME

Tetrahedron
No.

GPU Time (ms) CPU
Time(ms)M f u u′ Total

7456 50.0 2280.0 54.8 500.0 2884.8 298288
12584 102.8 4024.0 101.2 980.0 5208.0 666624
27918 190.0 6604.0 160.4 1788.0 8742.4 1186344

V. CONCLUSION

We presented a simulation method of the soft body de-
formation with GPU implementation. Based on the Delau-
nay Tetrahedralizition meshing algorithm, the finite element
method with a contact model was improved and applied to
present the friction efforts. Experiments using a torus model
were conducted to demonstrate that the proposed algorithm,
involving the isotropic and hyperelastic constitutive model,
works well for the large deformation simulation.

One of the issues that we would like to explore in future
is to add a locally tessellation into the model. During the
soft body interactions, the part deforming hardly needs more
meshes and details to be taken into account. Another possible
direction is to further improve the contact model. In this
paper, the compression happened between two surfaces is only
simulated by the displacement boundary condition, which may
occur a few of unrealistic deformations.

ACKNOWLEDGMENT

The work described in this paper was supported by several
grants, including a grant from the National Natural Science
Foundation of China (Project No. 61233012), a grant from
Ministry of Science and Technology of the People’s Republic
of China under the Singapore-China 9th Joint Research Pro-
gramme (Project No.: 2013DFG12900) and a Shen Zhen Basic
Research Grant (Project No.: JCYJ20130402113127511) .

REFERENCES

[1] F. Faure, B. Gilles, G. Bousquet, and D. K. Pai, “Sparse meshless
models of complex deformable solids,” ACM Transactions on Graphics,
vol. 30, no. 4, p. 1, Jul. 2011.

[2] I. Simonovski and L. Cizelj, “Automatic parallel generation of finite el-
ement meshes for complex spatial structures,” Computational Materials
Science, vol. 50, no. 5, pp. 1606–1618, Mar. 2011.

[3] G. Irving, C. Schroeder, and R. Fedkiw, “Volume conserving finite
element simulations of deformable models,” ACM Transactions on
Graphics, vol. 26, no. 3, p. 13, Jul. 2007.

[4] D. I. W. Levin, J. Litven, G. L. Jones, S. Sueda, and D. K. Pai, “Eulerian
solid simulation with contact,” ACM Transactions on Graphics, vol. 30,
no. 4, p. 1, Jul. 2011.

[5] K. Miller, G. Joldes, D. Lance, and A. Wittek, “Total Lagrangian
explicit dynamics finite element algorithm for computing soft tissue
deformation,” Communications in Numerical Methods in Engineering,
vol. 23, no. 2, pp. 121–134, Aug. 2006.

[6] S. Sueda, G. L. Jones, D. I. W. Levin, and D. K. Pai, “Large-scale
dynamic simulation of highly constrained strands,” ACM Transactions
on Graphics, vol. 30, no. 4, p. 1, Jul. 2011.

[7] K. Bathe, Finite element procedures, 1996.

[8] J. Kuan-Jung and E. L. Wilson, “An adaptive finite element technique
for structural dynamic analysis,” Computers & Structures, vol. 30, no. 6,
pp. 1319–1339, Jan. 1988.

[9] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa,
“Point based animation of elastic, plastic and melting objects,” in
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation - SCA ’04. New York, New York, USA: ACM
Press, 2004, p. 141.

[10] M. Tanveer and J. W. Zu, “Non-linear vibration of hyperelastic ax-
isymmetric solids by a mixed p-type method,” International Journal of
Non-Linear Mechanics, vol. 47, no. 4, pp. 30–41, May 2012.

[11] Z. a. Taylor, O. Comas, M. Cheng, J. Passenger, D. J. Hawkes, D. Atkin-
son, and S. Ourselin, “On modelling of anisotropic viscoelasticity for
soft tissue simulation: numerical solution and GPU execution.” Medical
image analysis, vol. 13, no. 2, pp. 234–244, Apr. 2009.

[12] B. Gilles, G. Bousquet, F. Faure, and D. K. Pai, “Frame-based elastic
models,” ACM Transactions on Graphics, vol. 30, no. 2, pp. 1–12, Apr.
2011.

[13] D. M. Kaufman, T. Edmunds, and D. K. Pai, “Fast frictional dynamics
for rigid bodies,” ACM Transactions on Graphics, vol. 24, no. 3, p. 946,
Jul. 2005.

[14] F. Bertails-Descoubes, F. Cadoux, G. Daviet, and V. Acary, “A non-
smooth Newton solver for capturing exact Coulomb friction in fiber
assemblies,” ACM Transactions on Graphics, vol. 30, no. 1, pp. 1–14,
Jan. 2011.

[15] G. Daviet, F. Bertails-Descoubes, and L. Boissieux, “A hybrid iterative
solver for robustly capturing coulomb friction in hair dynamics,” ACM
Transactions on Graphics, vol. 30, no. 6, p. 1, Dec. 2011.

[16] C. Je, M. Tang, Y. Lee, M. Lee, and Y. J. Kim, “PolyDepth: Real-
Time Penetration Depth Computation Using Iterative Contact-Space
Projection,” ACM Transactions on Graphics, vol. 31, no. 1, pp. 1–14,
Jan. 2012.

[17] Z. a. Taylor, M. Cheng, and S. Ourselin, “High-speed nonlinear finite
element analysis for surgical simulation using graphics processing
units.” IEEE transactions on medical imaging, vol. 27, no. 5, pp. 650–
63, May 2008.

[18] J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, and P. G. Kry,
“Volume contact constraints at arbitrary resolution,” ACM Transactions
on Graphics, vol. 29, no. 4, p. 1, Jul. 2010.

[19] N. Chentanez and M. Müller, “Real-time Eulerian water simulation
using a restricted tall cell grid,” ACM Transactions on Graphics, vol. 30,
no. 4, p. 1, Jul. 2011.

[20] C. Dick, J. Georgii, and R. Westermann, “A real-time multigrid finite
hexahedra method for elasticity simulation using CUDA,” Simulation
Modelling Practice and Theory, vol. 19, no. 2, pp. 801–816, Feb. 2011.

[21] S. Hahmann, G.-P. Bonneau, S. Barbier, G. Elber, and H. Hagen,
“Volume-preserving FFD for programmable graphics hardware,” The
Visual Computer, vol. 28, no. 3, pp. 231–245, Jul. 2011.

[22] H. Si and A. TetGen, “A quality tetrahedral mesh generator and three-
dimensional delaunay triangulator,” Weierstrass Institute for Applied
Analysis and Stochastic, Berlin, Germany, 2006.

[23] J. Tan, G. Turk, and C. K. Liu, “Soft body locomotion,” ACM Trans-
actions on Graphics, vol. 31, no. 4, pp. 1–11, Jul. 2012.

[24] M. Nesme, Y. Payan, F. Faure et al., “Efficient, physically plausible
finite elements,” in Eurographics, 2005.

[25] Y. Zhuang and J. Canny, “Haptic interaction with global deformations,”
in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), vol. 3. IEEE, 2000, pp. 2428–2433.

636

